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ABSTRACT 

There has been a lot of interest over recent years in the study of mathematical aspects 

and applications of the polarization tensor. This promising terminology appears 

widely in electric and electromagnetic inverse problems. Our main purpose in this 

paper then is to review the polarization tensor biologically in electro-sensing by a 

weakly electric fish and in the engineering problems which are based on the Eddy 

current principle. Here, the mathematical formulations of the polarization tensor for 

both cases are firstly presented. At the same time, a few related applications will also 

be briefly explained. 

 

Keywords: boundary integral equations, conductivity, Eddy currents, electro-sensing 

fish, matrices, metal detectors, permeability. 

 

1. Introduction 

Due to numerous efforts in studying it lately, the roles of the 

polarization tensor (PT) in electric and electromagnetic applications are 

becoming wider. In electrical imaging, instead of reconstructing back the 

image of a small conducting object (Ammari and Kang, 2007), the PT can 

be fitted to describe objects such as during electro-sensing by a weakly 

electric fish in Taufiq and Lionheart, 2012, as it offers lower computational 

cost. Meanwhile, because of several advantages for example as mentioned 
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in Blitz, 1991, the Eddy current principle is implemented in metal detector 

to locate and characterize metallic objects. The terminology PT is then 

adapted here in order to identity several other properties of the targeted 

metal such as shape, orientation and object material (see Marsh et al., 2013; 

Dekdouk et al., 2013, and Marsh et al., 2014). As the study of PT is quickly 

developed, the main purpose of this paper is to review past and present 

development about the PT especially in both applications with the hope to 

stimulate future studies about them. 

  

The concept and mathematical aspects of the generalized polarization 

tensor (GPT) was properly documented in Ammari and Kang, 2007 and 

applied to the Electrical Impedance Tomography (EIT) system through 

“Calderon's Inverse Problem” formula i.e. the inverse conductivity equation 

of the electric potential in a conductive body. Depending wholly on the 

object, there were two ways to determine its PT at specified value of 

conductivity according to Ammari and Kang, 2007, which were through an 

integral operator or by solving a transmission problem of a partial 

differential equation (PDE). Both approaches however were only possible 

by numerical method. 

 

Because of some similarities between the EIT system and electro-

sensing by a weakly electric fish (Nelson, 2009), the first order PT of the 

GPT was investigated by Taufiq and Lionheart, 2012, to see its role 

biologically in electro-sensing. Here, the first order PT for several objects in 

the experiment conducted by von der Emde and Fetz, 2007, were computed 

and compared. On the other hand, the theory of PT for Eddy current 

approximation to Maxwell’s equations was recently introduced by Ammari 

et al., 2013, where based on their studies, the PT for a specified object in 

the problem could so far be determined by solving a transmission problem 

of another PDE. A method to identify an arbitrary shaped target in the metal 

detector by using the PT was also introduced in Ammari et al., 2014. This 

study was then further extended and explored by Ledger and Lionheart, 

2013, in order to apply it to the related engineering applications. 

 

In order to further discuss about these areas of the PT, this paper will 

be organized as follows. The next section will review briefly about the 

GPT. Section 3 then explains the terminology PT in electro-sensing by 

weakly electric fish. After that, we will proceed to the PT for the Eddy 

current problem in Section 4. Finally, the last section will summarize and 

conclude the study.    
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2. Generalized Polarization Tensor  

We firstly consider here the PT that originates from a transmission 

problem of inverse conductivity equation which has being discussed by 

many literatures. Consider a Lipschitz bounded domain B in ℝ3 such that 

the origin O is in B. Let the conductivity of B be equal to k where 

0 1k    . Suppose that H is a harmonic function in ℝ3 and u is the 

solution to the following problem 

 

{
div(1 + (𝑘 − 1)𝜒(𝐵) grad(𝑢)) = 0 in ℝ3

𝑢(𝑥) − 𝐻(𝑥) = 𝑂(|𝑥|−2) as |𝑥| → ∞                    (1) 

 

where   denotes the characteristic function of B. The mathematical 

formulation (1) actually appears in many industrial applications such as 

medical imaging of EIT system, landmine detector and material sciences 

(Holder , 2005; Ammari and Kang, 2007; Adler et  al., 2011).  

 

The PT is then defined by Ammari and Kang, 2007, through the 

following far-field expansion. 

            

| |

| |,| | 1

( 1)
( )( ) ( ) ( , ) (0) as | |

! !

i
i j

x ij

i j

u H x x M k B H x
i j
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for i, j multi indices,   is the fundamental solution of the Laplacian and 

( , )ijM k B  is the generalized polarization tensor (GPT). The GPT is usually 

referred as the dipole in electromagnetic applications by physicists because 

it shows the distribution of the conductivity of the object. 

 

Furthermore, Ammari and Kang, 2007, extends the definition of GPT 

in (2) through an integral equation over the boundary of B by 
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where ( )i y  is given by 
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for ,x y B  with identity I and x  is the outer unit normal vector to the 

boundary B  at x. Here,   is defined by ( 1) / 2( 1)k k     and *

BK  is a 

singular integral operator defined with Cauchy principal value P.V. by 
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Consequently, the PT of B at any conductivity k, 0 1k     can be 

directly determined if B and its conductivity are known as given by (3), (4) 

and (5). It does not depend on the position of B and can be obtained without 

solving (2). Furthermore, it is shown in Ammari and Kang, 2007, that the 

PT rotates as B rotates so the PT also depends on the orientation of B. If B is 

an ellipsoid, an analytical formula for its first order PT as 3 3  matrix is 

also given in Ammari and Kang, 2007. 

 

Now, a transmission problem with the following equations is 

considered 

∆𝜓𝑖(𝑥) = 0, 𝑥 ∈ 𝐵 ∪ (ℝ3 ∖ 𝐵̅) 
| ( ) | ( ) 0,    i ix x x B      

( ) ( ) . ,    ji ix k x x x B
 


  

 
   

 
                       (6) 

( ) 0   as      if   3,i x x d     

where i  also satisfies the following decay estimates at infinity 

      2( ) ( ) ( ) | |   as  | |i

i

B

x x y d y O x x   



    . 

By finding the unique solution i  to the problem (6), Ammari and Kang, 

2007, proved that          

                    * *1 1
( ) ( )( )

1 2

ii
B BI K x I K y x

k
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 

 
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for x B . The PT can then be alternatively determined from 

2( , ) ( 1) ( ) ( 1) ( ) ( ).
i

j j i
ij

B B

x
M k B k x d x k x x d x


 

   


   

  
  
(8) 

 

In their study, Ammari and Kang, 2007, specifically applied and 

related the PT to the theory of dilute composite material, electrical 

impedance and elastic imaging. As computational aspects of the GPT were 

not focused there, a method to compute the GPT for two dimensional 

domains was developed in (Capdeboscq et al., 2011). For our purpose, we 

had discussed the procedure to determine the first order PT for three 

dimensional domains in Taufiq and Lionheart, 2013a. We then improved 

the results by solving (3), (4) and (5) with a software called as BEM++ as 

presented in Taufiq and Lionheart, 2013b. This method was then applied in 
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our further study on the role of the first order PT during electro-sensing by 

weakly electric fish.  

 

3. The First Order GPT in Electro-Sensing Fish 

A weakly electric fish in the rivers of South America and Africa 

performs electro-sensing in order to navigate as well as to characterize 

objects and locate prey (von der Emde, 2007). The fish is normally 

equipped with a single electric organ to discharge electric and has hundred 

of voltage sensing cells on the surface of its body. Since the fish typically 

moving through the water during electro-sensing, its single electric source 

looks to act in a similar way as switching between driven electrodes in an 

EIT system (Nelson, 2009). Because of this, we believe similar approach 

from the EIT can be used to study the fish. Assuming that the fish do not 

perform complete image reconstruction in the real time due to the 

complexity of the problem, the other way for the fish to electrically 

recognize the object is possibly by fitting the first order GPT for the object. 

 

Following Taufiq and Lionheart, 2012, let the electrical conductivity 

in the region exterior to a weakly electric fish be   and suppose that there 

is an isolated object B which is assumed to be a Lipschitz bounded domain 

in ℝ3  at some distance from the fish. Consider the domain Ω = ℝ3 − 𝐹 

where F is the fish and for any point 𝑥 ∈ ℝ3, 

   

1 ,
( )  

 ,

x B
x

k x B



 


 

where k constant. According to Ammari and Kang, 2007, if u is the voltage 

in the region   then the perturbation in the voltage due to a small object B 

can be approximated by an asymptotic expansion where the dominant term 

of the expansion is determined by the Polarization Tensor (PT). 

 

Now, if a harmonic function H is the voltage in   without the object 

B then from (2), 

              
2( )( ) ( ) ( ) (1/ | | )u H x x M H O O x      

                   
(9)

 

where the origin O B , 
1( ) (4 | |)x x     and M is the first order PT for 

B. Here, M for an object B at conductivity k is a real symmetric 3 3  matrix 

and is obtained by setting , (1,0,0),(0,1,0) and (0,0,1)i j   in (3) or (8) 

which is in the form 
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(1,0,0)(1,0,0) (1,0,0)(0,1,0) (1,0,0)(0,0,1)

(0,1,0)(1,0,0) (0,1,0)(0,1,0) (0,1,0)(0,0,1)

(0,0,1)(1,0,0) (0,0,1)(0,1,0) (0,0,1)(0,0,1)

( , ) .

M M M

M k B M M M

M M M

 
 

  
 
 

           (10)

 

Since B is described by (9), M can then be used instead of full ( )( )u H x  

to describe B. 

 

In order to examine the role of the PT in electro-sensing, we initiated 

an investigation on several experiments conducted by von der Emde and 

Fetz, 2007, about the abilities of elephantnose fish Gnathonemus petersiis 

to distinguish different objects through electrolocation (a type of electro-

sensing). At this stage, only the first order PT for a few objects used in the 

experiment were considered and calculated by using our method in Taufiq 

and Lionheart, 2013a and Taufiq and Lionheart, 2013b, where two objects 

were said to be electrically similar if their first order PT were the same. We 

then reanalyzed their findings based on those the PT to look for any 

evidences that may support our hypothesis that the fish used the first order 

PT as part of its object recognition algorithm. 
 

 

 
 

Figure 1: A petersii elephantnose fish 

 

When the fish were trained in von der Emde and Fetz, 2007, to accept 

and reject two different objects, we found in Taufiq and Lionheart, 2012, 

that the fish needed longer time to accept and reject two objects if the 

difference between PT for both objects was small. In addition, the study 

conducted in Taufiq and Lionheart, 2013c, suggested that the same fish 

could measure the difference between the first order PT for two objects with 

different sizes or type of materials before making decision about the 

objects. Basically, after the fish were able to correctly choose what they 

were trained to accept and reject, they would most likely choose objects 

according to the way they were trained (von der Emde and Fetz, 2007).   

 

Recently, we also learned in Taufiq and Lionheart, 2014, that in 

general, given the object that it was trained to accept and a few new objects, 
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the percentage for the fish to choose what it was trained to accept increased 

as the difference between the first order PT for the object that it was trained 

to accept and the new object given to it increased. The fish would easily 

accept what it was trained to accept if given to it the object it was trained to 

accept and a new object where the difference of the PT for both objects was 

large. On the other hand, the fish would easily accepted any new object if 

given to them the object it was trained to reject and the new object 

regardless the difference between the first order PT for both objects.  This 

behavior probably caused by strong influence during the training to reject 

the object. All these results were consistent with our hypothesis that the first 

order PT had some roles in electro-sensing of the fish.  

 

We are currently proposing a few potential studies that can be 

conducted to further justify the role of the first order PT during electro-

sensing in our next publication. One possible experiment that can be 

conducted is to ask the fish to distinguish two objects that has the same first 

order PT. We have presented a technique to construct two objects that have 

the same first order PT in Taufiq and Lionheart, 2013d, to achieve this. In 

the future, if we found that the fish can discriminate two objects with the 

same first order PT, we can then say it uses more than the first order PT in 

their recognition mechanism. It might use the higher order PT as well.     

 

4. Polarization Tensor for Eddy Current Problem 

Metal detection is highly regarded in industrial and engineering 

applications. Therefore, improving metal detectors are very essential for 

examples to increase the correct alarms during security screening and 

provide better safety when removing land mines. As metal detector is built 

according to Eddy current principles, recent study in electromagnetic 

suggests that one possible approach is to locate and characterize the target 

by using the PT of the Eddy current. In their engineering works, the PT for 

Eddy current was implemented to a metal detector prototype for security 

screening by Marsh et al., 2013, and Marsh et al., 2014,  where it described 

location, dimension, orientation and material property of the potential threat 

objects. On the other hand, Dekdouk et al., 2012, conducted several 

experiments by adapting the PT to a different type of metal detector in order 

to identify buried metallic landmines in the contaminated environmental 

fields.  

 

In general, metal detectors in the previous experiments had a standard 

transmitting and receiving coil for field measurements. The PT, M of the 

target in the metal detector was then derived from the relation 
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                      T R

indV H MH                                           (11) 

where indV  was the induced eddy current field due to the presence of the 

target at some location while both TH  and RH  were the fields generated 

by the transmitting and receiving coil respectively. By assuming it exists, M 

was computed by numerical optimization technique after indV , TH  and RH  

were measured in each study. Thus, M for the tested target was actually 

reconstructed based on (11) and was only an approximation. It was not 

computed according to a specific formula based on the target as such 

formula was not yet available at that time. 

  

As our information about what to detect increases from previous 

experiences, the formula of M if exists will enable us to accurately compute 

the PT and hence improving its implementation to the metal detector. The 

formula of the PT in this case is only recent and firstly derived by Ammari 

et al. (2013). In this case, the PT describes the perturbation in the magnetic 

fields generated by the Eddy current due to the presence of an object. Thus, 

the aim of this section is to review mathematical background of this PT as 

well as to discuss a few ongoing studies and applications about it. However, 

mathematical formulation of the Eddy current itself is not discussed but is 

referred from (Rodriguez and Valli (2010)). 

 

                    
           (a)          (b) 

 
Figure 2: Metal detectors in (a) Airport security scanning and (b) Land-mine detector  

 

 

Suppose that there is an object of the form B z B    included in 

ℝ3
 which means that the object can be expressed in terms of smooth and 

bounded unit domain 𝐵 ∈ ℝ3 placed at the origin, scaled by the object size 
  as well as translated by the vector z. Introduce 

 

𝜇𝛼 = {
𝜇∗ in 𝐵𝛼
𝜇0 in ℝ3 ∖ 𝐵𝛼

 ,  𝜎𝛼 = {
𝜎∗ in 𝐵𝛼
0 in ℝ3 ∖ 𝐵𝛼
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where 
0  denotes the magnetic permeability of the free space ℝ3  while 

both 
*  and 

*  denote the permeability and conductivity of the object. 

Here, 
*  and 

*  are assumed to be constant. 

 

Let E  and H  be the time harmonic Eddy current fields (electric 

and magnetic) in the presence of B  that result from a current source 0J  

located outside B . By assuming 0 0  J  in ℝ3, both fields E  and H  

satisfy the Eddy current equations 

∇ × 𝑬𝛼 = i𝜔𝜇𝛼𝑯𝛼 in ℝ3, 

            ∇ × 𝑯𝛼 = 𝜎𝛼𝑬𝛼 + 𝑱0 in ℝ3 , 
1( ) (| | )x O x

E , 1( ) (| | )x O x

H  as | |x   

where i is the standard imaginary unit and   is the angular frequency from 

the current source. On the other hand, without the object B , the fields 0E  

and 0H  that result from time varying current source satisfy 

∇ × 𝑬0 = i𝜔𝜇0𝑯0 in ℝ3, 

∇ × 𝑯0 = 𝑱0 in ℝ3 

  1

0 ( ) (| | )x O x E , 1

0 ( ) (| | )x O x H  as | |x  . 

By letting 2

0 *    , Ammari et al. (2013) derived the 

perturbation of magnetic field 0( ) ( ) H x H x  at position x and away from 

z due to the presence of B  as follows 
 

 
3 3
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i i i

i B

G d
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G d



 

   
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  
 xH z D x,z e R x 

      

(12)    

when 0   and (1)O   for every   . 
1

( )
4 | |

G


x,z
x - z

 is the free 

space Laplace Greens function and 4( ) ( )O R x  is a small remainder 

term. Furthermore, for 1,2,3i  , ie  is a unit vector for the ith Cartesian 

coordinate direction, 0 ( )iH z  denotes the ith element of 0 ( )iH z  and i  is 

the solution to the transmission problem  
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1 2 2i i   in  c

i i i B B         e     , 

0  in  c

i B    , 

        0  on  i 
  n ,             (13) 

1 12   on  i i  

 
            n e n  , 

1( ) (| | )  as  | |i O       

 

where n  is the outward normal vector to the boundary of unit domain B 

denoted by   while   and   represents the conductivity and permeability 

of B. 

 

From this introductory, (12) is expressed in the alternative compact 

form by Ledger and Lionheart (2013) as 

 

                           

  2

0 0( ) ( ) ( ) ( )G M   xH H x D x,z H z R x                (14) 

 

where M is the desired PT and can be regarded as a rank 2 or a rank 4 

tensor. M is built by Ledger and Lionheart, 2013, from the combination of 

the original permeability polarization tensor, n and the conductivity 

polarization tensor, c of Ammari et al., 2013, given by 

1
( )

2
l l i i

B

d   c e e    ,                 (15) 

0

*

1
1

2
i i

B

d




   
      

  
n e   , 

for , 1,2,3l l  . The engineering prediction about the polarization tensor in 

(11) was then confirmed by treating M as the rank 2 tensor. Several 

properties of M as the rank 4 and the rank 2 tensor were also investigated 

later on. Moreover, a hp-Finite Element method to compute M for both 

forms was also introduced in Ledger and Lionheart, 2013, to describe M for 

a few common objects.  

 

Based on these derivations, the PT for a known object in the related 

applications can now be determined by using the established formulas (13) 

and (15). Our next study will focus on computing and describing a few 

objects which appear in the metal detector such as coin, knife, gun, belt 

buckle and land mines by using their PT. It is also our aim to compare 

between the reconstructed PT and the computed PT with the hope to 

improve metal detection by the PT in the future.  
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5. Discussions and Conclusions 

During this study, the mathematical formulation of the first order PT 

in electro-sensing fish which is based on the first order GPT is highlighted. 

In order to achieve this, the mathematical formulation and a few studies 

about the GPT itself are firstly presented. We then discuss previous studies 

about the role of the first order PT in this area as well as current and future 

planned investigation to further justify it. On the other hand, a new 

mathematical formulation of the PT for Eddy current problems which is 

developed to improve metal detectors in engineering applications is also 

reviewed here. While the PT in electro-sensing is defined in the perturbated 

electrical fields, the PT for Eddy current is introduced based on the 

perturbation in the magnetic field of the induced current. For each case, the 

perturbation to the field is caused due to the presence of an object. 

However, only electrical conductivity of the object matters for the PT in 

electro-sensing but both conductivity and permeability of the object must be 

considered in the PT for eddy current. By relating these two PT, we believe 

that a few good strategies by weakly electric fish to detect and describe 

objects can be modified and adapted in metal detector through the PT in the 

future.        
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